Using PDMA+ADC on Holtek HT32F52352 MCU to Sample Multiple Analog Channels and Display on 0.96-inch OLED
Recently I joined the Holtek Cup competition and wrote a short tutorial for everyone.
Holtek HT32 MCU Development Environment Setup Guide: https://blog.zeruns.com/archives/709.html
Electronics / MCU Technical Discussion Group: 2169025065
Result Picture
ADC & PDMA Introduction
ADC – Analog-to-Digital Converter: HT32F52352 integrates a 12-bit successive-approximation (SAR) ADC with 12 external analog input channels and 2 internal channels (VDD & GND), supporting up to 1 Msps sampling rate.
PDMA – Peripheral Direct Memory Access: HT32F52352 provides 6 PDMA channels, but only CH0 can be used with the ADC.
The ADC conversion data register ADC_DR is 32-bit, yet only the lower 16 bits are valid. When PDMA is configured in 16-bit data-width mode, the upper 16 invalid bits are also transferred to the next location. Therefore PDMA must use 32-bit data-width mode, and the final data is masked with & 0x0000FFFF to discard the upper 16 bits. If anyone has a better solution, feel free to discuss it in the comments.
Purchase links for required items:
ESK32 Development Board: https://s.click.taobao.com/ndAFyKu
DAPLINK: https://s.click.taobao.com/Lt4FyKu
Dupont Wires: https://s.click.taobao.com/QVTFyKu
0.96-inch OLED: https://s.click.taobao.com/XLU9ZJu
Source Code
Complete project download: https://url.zeruns.com/HT32_PDMA_ADC
Main source files below:
main.c
#include "ht32.h"
#include "GPIO.h"
#include "BFTM0.h"
//#include "GPTM0.h"
//#include "GPTM1.h"
#include "delay.h"
#include "OLED.h"
#include "WDT.h"
#include "ADC.h"
int main(void)
{
GPIO_Configuration(); // Initialize GPIO
BFTM0_Configuration(); // Initialize BFTM0 timer
GPTM0_Configuration(); // Initialize GPTM0 timer
GPTM1_Configuration(); // Initialize GPTM1 timer
WDT_Configuration(); // Initialize watchdog
OLED_Init(); // Initialize OLED
ADC_Configuration(); // Initialize ADC
OLED_ShowString(1, 1, "AD0:"); // Display string “AD0:” at row 1, col 1
OLED_ShowString(2, 1, "AD1:");
OLED_ShowString(3, 1, "AD2:");
OLED_ShowString(4, 1, "AD3:");
OLED_ShowString(1, 11, ".");OLED_ShowString(1, 15, "V");
OLED_ShowString(2, 11, ".");OLED_ShowString(2, 15, "V");
uint16_t count1 = 0;
while (1)
{
if (HT_CKCU->APBCCR1 & (1 << 4)) // Check if watchdog clock is enabled
WDT_Restart(); // Reload watchdog counter
OLED_ShowNum(3, 12, count1, 5);
OLED_ShowNum(4, 12, count2, 5);
OLED_ShowNum(1, 5, AD_Value[0] & 0x0000FFFF, 4); // Display ADC sample
float Voltage0 = (AD_Value[0] & 0x0000FFFF) / 4096.0 * 3.3; // Convert to voltage
OLED_ShowNum(1, 10, (uint8_t)Voltage0, 1); // Integer part
OLED_ShowNum(1, 12, (uint16_t)(Voltage0 * 1000) % 1000, 3); // Fraction part
OLED_ShowNum(2, 5, AD_Value[1] & 0x0000FFFF, 4);
float Voltage1 = (AD_Value[1] & 0x0000FFFF) / 4096.0 * 3.3;
OLED_ShowNum(2, 10, (uint8_t)Voltage1, 1);
OLED_ShowNum(2, 12, (uint16_t)(Voltage1 * 1000) % 1000, 3);
OLED_ShowNum(3, 5, AD_Value[2] & 0x0000FFFF, 4);
OLED_ShowNum(4, 5, AD_Value[3] & 0x0000FFFF, 4);
// https://blog.zeruns.com
GPIO_WriteOutBits(HT_GPIOC, GPIO_PIN_14, RESET); // Set PC14 low
GPIO_WriteOutBits(HT_GPIOC, GPIO_PIN_15, SET); // Set PC15 high
Delay_ms(100); // Delay 100 ms
GPIO_WriteOutBits(HT_GPIOC, GPIO_PIN_14, SET);
GPIO_WriteOutBits(HT_GPIOC, GPIO_PIN_15, RESET);
Delay_ms(100);
count1++;
}
}
ADC.c
#include "ADC.h"
uint32_t AD_Value[4];
void ADC_Configuration(void)
{
CKCU_PeripClockConfig_TypeDef CKCUClock = {{0}}; // Struct for clock config
CKCUClock.Bit.PA = 1; // Enable GPIOA clock
CKCUClock.Bit.ADC = 1; // Enable ADC clock
CKCUClock.Bit.AFIO = 1; // Enable AFIO clock
CKCUClock.Bit.PDMA = 1; // Enable PDMA clock
CKCU_PeripClockConfig(CKCUClock, ENABLE); // Enable peripheral clocks
ADC_Reset(HT_ADC); // Reset ADC
CKCU_SetADCPrescaler(CKCU_ADCPRE_DIV4); // Set ADC clock prescaler
AFIO_GPxConfig(GPIO_PA, AFIO_PIN_0, AFIO_FUN_ADC); // Configure PA0 as ADC
AFIO_GPxConfig(GPIO_PA, AFIO_PIN_1, AFIO_FUN_ADC);
AFIO_GPxConfig(GPIO_PA, AFIO_PIN_2, AFIO_FUN_ADC);
AFIO_GPxConfig(GPIO_PA, AFIO_PIN_3, AFIO_FUN_ADC);
// https://blog.zeruns.com
ADC_RegularChannelConfig(HT_ADC, ADC_CH_0, 0); // Insert channel 0 into regular group sequence 0
ADC_RegularChannelConfig(HT_ADC, ADC_CH_1, 1); // Insert channel 1 into sequence 1
ADC_RegularChannelConfig(HT_ADC, ADC_CH_2, 2);
ADC_RegularChannelConfig(HT_ADC, ADC_CH_3, 3);
// https://blog.vpszj.cn
ADC_RegularGroupConfig(HT_ADC, CONTINUOUS_MODE, 4, 1); // Continuous mode, length 4
ADC_RegularTrigConfig(HT_ADC, ADC_TRIG_SOFTWARE); // Software trigger
ADC_SamplingTimeConfig(HT_ADC, 16); // Sample time 16 cycles
// ADC_IntConfig(HT_ADC, ADC_INT_CYCLE_EOC, ENABLE); // Enable ADC interrupt
// NVIC_EnableIRQ(ADC_IRQn); // Enable ADC IRQ
PDMACH_InitTypeDef PDMACH_InitStructure; // PDMA config struct
PDMACH_InitStructure.PDMACH_SrcAddr = (u32)(&HT_ADC->DR); // Source: ADC_DR
PDMACH_InitStructure.PDMACH_DstAddr = (u32)AD_Value; // Destination buffer
PDMACH_InitStructure.PDMACH_AdrMod = SRC_ADR_LIN_INC | DST_ADR_LIN_INC | AUTO_RELOAD;
PDMACH_InitStructure.PDMACH_Priority = H_PRIO; // High priority
PDMACH_InitStructure.PDMACH_BlkCnt = 4; // Transfer 4 blocks
PDMACH_InitStructure.PDMACH_BlkLen = 1;
PDMACH_InitStructure.PDMACH_DataSize = WIDTH_32BIT; // 32-bit width
PDMA_Config(PDMA_CH0, &PDMACH_InitStructure); // Init PDMA CH0
// PDMA_IntConfig(PDMA_CH0, (PDMA_INT_GE | PDMA_INT_TC), ENABLE); // Enable PDMA IRQ
PDMA_EnaCmd(PDMA_CH0, ENABLE); // Enable PDMA CH0
ADC_PDMAConfig(HT_ADC, ADC_PDMA_REGULAR_CYCLE, ENABLE); // Enable ADC PDMA trigger
ADC_Cmd(HT_ADC, ENABLE); // Enable ADC
ADC_SoftwareStartConvCmd(HT_ADC, ENABLE); // Software start
PDMA_SwTrigCmd(PDMA_CH0, ENABLE); // Software trigger PDMA
}
ADC.h
#ifndef __ADC_H
#define __ADC_H
#include "ht32.h"
extern uint32_t AD_Value[4];
void ADC_Configuration(void);
#endif
```**OLED.c**
```c++
#include "ht32.h"
#include "OLED_Font.h"
/*Pin configuration*/
#define OLED_SCL GPIO_PIN_7
#define OLED_SDA GPIO_PIN_8
#define OLED_W_SCL(x) GPIO_WriteOutBits(HT_GPIOB, OLED_SCL, (FlagStatus)(x))
#define OLED_W_SDA(x) GPIO_WriteOutBits(HT_GPIOB, OLED_SDA, (FlagStatus)(x))
/*Pin initialization*/
void OLED_I2C_Init(void)
{
CKCU_PeripClockConfig_TypeDef CKCUClock = {{ 0 }}; //Define structure to configure clock
CKCUClock.Bit.PB = 1; //Enable GPIOB clock
CKCU_PeripClockConfig(CKCUClock, ENABLE); //Enable peripheral clock
GPIO_SetOutBits (HT_GPIOB, OLED_SCL); //Set IO pin to output high level
GPIO_DirectionConfig (HT_GPIOB, OLED_SCL, GPIO_DIR_OUT); //Set IO pin as output mode
GPIO_OpenDrainConfig (HT_GPIOB, OLED_SCL, ENABLE); //Set IO pin as open-drain output mode
GPIO_PullResistorConfig (HT_GPIOB, OLED_SCL, GPIO_PR_UP); //Set IO pin as pull-up output mode
//GPIO_DriveConfig (HT_GPIOB, OLED_SCL,GPIO_DV_12MA); //Set IO pin output current mode
GPIO_SetOutBits (HT_GPIOB, OLED_SDA);
GPIO_DirectionConfig (HT_GPIOB, OLED_SDA, GPIO_DIR_OUT);
GPIO_OpenDrainConfig (HT_GPIOB, OLED_SDA, ENABLE);
GPIO_PullResistorConfig (HT_GPIOB, OLED_SDA, GPIO_PR_UP);
//GPIO_DriveConfig (HT_GPIOB, OLED_SDA,GPIO_DV_12MA);
OLED_W_SCL(1);
OLED_W_SDA(1);
}
/**
* @brief I2C start
* @param None
* @retval None
*/
void OLED_I2C_Start(void)
{
OLED_W_SDA(1);
OLED_W_SCL(1);
OLED_W_SDA(0);
OLED_W_SCL(0);
}
/**
* @brief I2C stop
* @param None
* @retval None
*/
void OLED_I2C_Stop(void)
{
OLED_W_SDA(0);
OLED_W_SCL(1);
OLED_W_SDA(1);
}
/**
* @brief I2C send one byte
* @param Byte Byte to be sent
* @retval None
*/
void OLED_I2C_SendByte(uint8_t Byte)
{
uint8_t i;
for (i = 0; i < 8; i++)
{
OLED_W_SDA(Byte & (0x80 >> i));
OLED_W_SCL(1);
OLED_W_SCL(0);
}
OLED_W_SCL(1); //Extra clock, no ACK handling
OLED_W_SCL(0);
}
/**
* @brief OLED write command
* @param Command Command to be written
* @retval None
*/
void OLED_WriteCommand(uint8_t Command)
{
OLED_I2C_Start();
OLED_I2C_SendByte(0x78); //Slave address
OLED_I2C_SendByte(0x00); //Write command
OLED_I2C_SendByte(Command);
OLED_I2C_Stop();
}
/**
* @brief OLED write data
* @param Data Data to be written
* @retval None
*/
void OLED_WriteData(uint8_t Data)
{
OLED_I2C_Start();
OLED_I2C_SendByte(0x78); //Slave address
OLED_I2C_SendByte(0x40); //Write data
OLED_I2C_SendByte(Data);
OLED_I2C_Stop();
}
/**
* @brief OLED set cursor position
* @param Y Coordinate in downward direction from top-left origin, range: 0~7
* @param X Coordinate in rightward direction from top-left origin, range: 0~127
* @retval None
*/
void OLED_SetCursor(uint8_t Y, uint8_t X)
{
OLED_WriteCommand(0xB0 | Y); //Set Y position
OLED_WriteCommand(0x10 | ((X & 0xF0) >> 4)); //Set X position low 4 bits
OLED_WriteCommand(0x00 | (X & 0x0F)); //Set X position high 4 bits
}
/**
* @brief OLED clear screen
* @param None
* @retval None
*/
void OLED_Clear(void)
{
uint8_t i, j;
for (j = 0; j < 8; j++)
{
OLED_SetCursor(j, 0);
for(i = 0; i < 128; i++)
{
OLED_WriteData(0x00);
}
}
}
/**
* @brief OLED partial clear
* @param Line Line position, range: 1~4
* @param start Column start position, range: 1~16
* @param end Column start position, range: 1~16
* @retval None
*/
void OLED_Clear_Part(uint8_t Line, uint8_t start, uint8_t end)
{
uint8_t i,Column;
for(Column = start; Column <= end; Column++)
{
OLED_SetCursor((Line - 1) * 2, (Column - 1) * 8); //Set cursor position in upper half
for (i = 0; i < 8; i++)
{
OLED_WriteData(0x00); //Display upper half content
}
OLED_SetCursor((Line - 1) * 2 + 1, (Column - 1) * 8); //Set cursor position in lower half
for (i = 0; i < 8; i++)
{
OLED_WriteData(0x00); //Display lower half content
}
}
}
/**
* @brief OLED display one character
* @param Line Line position, range: 1~4
* @param Column Column position, range: 1~16
* @param Char Character to display, range: ASCII visible characters
* @retval None
*/
void OLED_ShowChar(uint8_t Line, uint8_t Column, char Char)
{
uint8_t i;
OLED_SetCursor((Line - 1) * 2, (Column - 1) * 8); //Set cursor position in upper half
for (i = 0; i < 8; i++)
{
OLED_WriteData(OLED_F8x16[Char - ' '][i]); //Display upper half content
}
OLED_SetCursor((Line - 1) * 2 + 1, (Column - 1) * 8); //Set cursor position in lower half
for (i = 0; i < 8; i++)
{
OLED_WriteData(OLED_F8x16[Char - ' '][i + 8]); //Display lower half content
}
}
/**
* @brief OLED display string
* @param Line Starting line position, range: 1~4
* @param Column Starting column position, range: 1~16
* @param String String to display, range: ASCII visible characters
* @retval None
*/
void OLED_ShowString(uint8_t Line, uint8_t Column, char *String)
{
uint8_t i;
for (i = 0; String[i] != '\0'; i++)
{
OLED_ShowChar(Line, Column + i, String[i]);
}
}
/**
* @brief OLED power function
* @retval Return value equals X to the power of Y
*/
uint32_t OLED_Pow(uint32_t X, uint32_t Y)
{
uint32_t Result = 1;
while (Y--)
{
Result *= X;
}
return Result;
}
/**
* @brief OLED display number (decimal, positive)
* @param Line Starting line position, range: 1~4
* @param Column Starting column position, range: 1~16
* @param Number Number to display, range: 0~4294967295
* @param Length Length of number to display, range: 1~10
* @retval None
*/
void OLED_ShowNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
{
uint8_t i;
for (i = 0; i < Length; i++)
{
OLED_ShowChar(Line, Column + i, Number / OLED_Pow(10, Length - i - 1) % 10 + '0');
}
}
/**
* @brief OLED display number (decimal, signed)
* @param Line Starting line position, range: 1~4
* @param Column Starting column position, range: 1~16
* @param Number Number to display, range: -2147483648~2147483647
* @param Length Length of number to display, range: 1~10
* @retval None
*/
void OLED_ShowSignedNum(uint8_t Line, uint8_t Column, int32_t Number, uint8_t Length)
{
uint8_t i;
uint32_t Number1;
if (Number >= 0)
{
OLED_ShowChar(Line, Column, '+');
Number1 = Number;
}
else
{
OLED_ShowChar(Line, Column, '-');
Number1 = -Number;
}
for (i = 0; i < Length; i++)
{
OLED_ShowChar(Line, Column + i + 1, Number1 / OLED_Pow(10, Length - i - 1) % 10 + '0');
}
}
/**
* @brief OLED display number (hexadecimal, positive)
* @param Line Starting line position, range: 1~4
* @param Column Starting column position, range: 1~16
* @param Number Number to display, range: 0~0xFFFFFFFF
* @param Length Length of number to display, range: 1~8
* @retval None
*/
void OLED_ShowHexNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
{
uint8_t i, SingleNumber;
for (i = 0; i < Length; i++)
{
SingleNumber = Number / OLED_Pow(16, Length - i - 1) % 16;
if (SingleNumber < 10)
{
OLED_ShowChar(Line, Column + i, SingleNumber + '0');
}
else
{
OLED_ShowChar(Line, Column + i, SingleNumber - 10 + 'A');
}
}
}
/**
* @brief OLED display number (binary, positive)
* @param Line Starting line position, range: 1~4
* @param Column Starting column position, range: 1~16
* @param Number Number to display, range: 0~1111 1111 1111 1111
* @param Length Length of number to display, range: 1~16
* @retval None
*/
void OLED_ShowBinNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length)
{
uint8_t i;
for (i = 0; i < Length; i++)
{
OLED_ShowChar(Line, Column + i, Number / OLED_Pow(2, Length - i - 1) % 2 + '0');
}
}
/**
* @brief OLED initialization
* @param None
* @retval None
*/
void OLED_Init(void)
{
uint32_t i, j;
for (i = 0; i < 1000; i++) //Power-on delay
{
for (j = 0; j < 1000; j++);
}
OLED_I2C_Init(); //Port initialization
OLED_WriteCommand(0xAE); //Display off
OLED_WriteCommand(0xD5); //Set display clock divide ratio/oscillator frequency
OLED_WriteCommand(0x80);
OLED_WriteCommand(0xA8); //Set multiplex ratio
OLED_WriteCommand(0x3F);
OLED_WriteCommand(0xD3); //Set display offset
OLED_WriteCommand(0x00);
OLED_WriteCommand(0x40); //Set display start line
OLED_WriteCommand(0xA1); //Set segment remap, 0xA1 normal 0xA0 reverse left-right
OLED_WriteCommand(0xC8); //Set COM output scan direction, 0xC8 normal 0xC0 reverse up-down
OLED_WriteCommand(0xDA); //Set COM pins hardware configuration
OLED_WriteCommand(0x12);
OLED_WriteCommand(0x81); //Set contrast control
OLED_WriteCommand(0xCF);
OLED_WriteCommand(0xD9); //Set pre-charge period
OLED_WriteCommand(0xF1);
OLED_WriteCommand(0xDB); //Set VCOMH deselect level
OLED_WriteCommand(0x30);
OLED_WriteCommand(0xA4); //Set entire display on/off
OLED_WriteCommand(0xA6); //Set normal/inverse display
OLED_WriteCommand(0x8D); //Set charge pump
OLED_WriteCommand(0x14);
OLED_WriteCommand(0xAF); //Display on
OLED_Clear(); //OLED clear screen
}
OLED.h
#ifndef __OLED_H
#define __OLED_H
void OLED_Init(void);
void OLED_Clear(void);
void OLED_ShowChar(uint8_t Line, uint8_t Column, char Char);
void OLED_ShowString(uint8_t Line, uint8_t Column, char *String);
void OLED_ShowNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length);
void OLED_ShowSignedNum(uint8_t Line, uint8_t Column, int32_t Number, uint8_t Length);
void OLED_ShowHexNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length);
void OLED_ShowBinNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length);
void OLED_Clear_Part(uint8_t Line, uint8_t start, uint8_t end);
#endif
Recommended Reading- High Cost-Performance and Cheap VPS/Cloud Server Recommendations: https://blog.vpszj.cn/archives/41.html
- How to Set Up a Personal Blog: https://blog.zeruns.com/archives/218.html
- Minecraft Server Setup Tutorial: https://blog.zeruns.com/tag/mc/
- STM32 Reading SHT3x Series Temperature and Humidity Sensor: https://blog.zeruns.com/archives/700.html
- Using VSCode Instead of Keil for STM32 and 51 Microcontroller Development: https://blog.zeruns.com/archives/690.html
- Ultrasonic Distance Measurement with STM32 and HC-SR04 Module: https://blog.zeruns.com/archives/680.html




