2011 National Electric Competition Question – Switching Power Supply Module Parallel Power System

2011 National Electric Contest Problem – Switching Power Module Parallel Power Supply System. Two XL4015 chips serve as DC-DC modules outputting 8 V; master–slave current-sharing is adopted, enabling accurate current allocation in multiple ratios with efficiency above 80 %.

Electronics / MCU Technology Group: 2169025065

Topic

Design and build a parallel power-supply system composed of two 8 V DC-DC modules each rated at 16 W output power.

Introduction

This entry uses the master–slave current-sharing method and consists of a constant-current source (slave), constant-voltage source (master), MCU control board, auxiliary power supply, etc. XL4015 is employed in both modules for buck step-down; Hezhou AIR32F103CCT6 MCU is the control core, and INA199 current-sense amplifier provides 50× gain for current sampling. The two sensed signals are summed in a non-inverting adder; the adder output is divided by fixed resistors and a digital potentiometer, then fed through a voltage follower and LM358 comparator back to the FB pin of the XL4015 in the slave module (constant-current source) to control its current and realise current allocation.

Note: On first use, disconnect the parallel-output jumper cap, adjust the constant-voltage source (master) to 8 V, and set the constant-current source (slave) 0.3–0.5 V higher than the master.

Campus contest selection work—comments from experts are welcome.

LCSC open-source link: https://url.zeruns.com/GrMC6

Photos


Downloads

Source code: https://url.zeruns.com/nSNjc Extraction code: swoz

Datasheets: https://url.zeruns.com/TBn42 Extraction code: j542

Test Data

  1. DC output voltage & efficiency test
    Method: adjust load resistor until I₀≈4 A, record U₀, UIN, I₀, IIN.
Uin(V) Iin(A) U0(V) I0(A) Efficiency
24.05 1.57 7.76 3.97 81.6 %

Conclusion: output 7.76 V, system efficiency 81.6 %.

  1. Relative current error at I₀=1 A & 1.5 A
    Method: adjust load to 1 A or 1.5 A, record U₀, UIN, I₁, I₂, I₀, IIN.

I₀=1 A:

Uin(V) Iin(A) U0(V) I1(A) I2(A) I0(A) Error1 Error2
24.08 0.454 7.999 0.501 0.526 1.032 2.9 % 1.9 %

I₀=1.5 A:

UIN(V) IIN(A) U0(V) I1(A) I2(A) I0(A) Error1 Error2
24.06 0.635 7.969 0.498 1.052 1.523 1.9 % 3.6 %

Conclusion: relative error ≤3.6 %, better than the required <5 %.

  1. Relative error for 1.5 A < I₀ < 3.5 A with set ratios
    Method: fix 1.5 A total, test ratios 1:1, 1:2, 2:1, 2:3, 3:2.
Ratio UIN(V) IIN(A) U0(V) I1(A) I2(A) I0(A) Error1 Error2
1:1 24.06 0.628 7.952 0.778 0.744 1.522 2 % 2 %
1:2 24.06 0.63 7.972 0.500 1.025 1.522 1.4 % 1.1 %
2:1 24.05 0.627 7.931 1.015 0.509 1.524 0.01 % 0.2 %
2:3 24.07 0.629 7.963 0.604 0.920 1.522 0.7 % 0.7 %
3:2 24.06 0.626 7.923 0.926 0.595 1.524 1.25 % 2 %

Conclusion: relative error ≤2 %, meets specification.

  1. Relative error at I₀=4 A
    Method: adjust load to ≈4 A.
UIN(V) IIN(A) U0(V) I1(A) I2(A) I0(A) Error1 Error2
24.04 1.568 7.73 1.96 1.945 3.968 1.2 % 1.9 %

Conclusion: relative error ≤2 %, meets specification.

Component Purchase Links

  • 0805 resistor sample book: https://s.click.taobao.com/oWjIgGu
  • 0805 capacitor sample book: [https://s.click.taobao.com/r9ea1Hu](https://s.click.taobao.com/t?e=m%3D2%26s%3DHUOwk6IKUTtw4vFB6t2Z2ueEDrYVVa64K7Vc7tFgwiHjf2vlNIV67nYY5qxgQ5pjPkWZNjOK2CN%2FmzaS0s2vXCsmIF0UHtujBkxkgN7jKg%2BiJaQjFxYBevWfPAv4x3d%2FOlGkMkr%2BSUUYmUGuVZn0uUeNaL1L6rWLYVnYE523ghoLZMqoQW%2BfuKGzo1lVxIioZ7PkP5ESYSK2NOnbQ%2FlO5lq7XGYat254ig%